Thursday, November 19, 2009

Anti-Virus Strategy

Definitions

The definitions used here are pretty generic, and are adapted for use in an interdisciplinary approach to the problems addressed. Some among us would argue that the systems movement was born out of science's failures [4], but in this paper, we take the view that General System theory is a child of successful science, and as most children, it sees things through optimistic eyes. We have specifically avoided in-depth discussion of categorical schemes, generalizations, and other commonly used 'tools' of General Systems thought, and have focused instead on the simplest of the simple. The ideas in this paper are drawn heavily from very basic works in systems theory. They are not new ideas, but it is our hope that their application to the management of security and computer viruses will help us identify some of the problems we may be overlooking.



General Systems Theory


A system is a set, or group, of related elements existing in an environment and forming a whole. Systems can be made up of objects (computers), subjects (your employees) and concepts (language and communication); they can be made up of any one or more of these elements. There are 'real systems' (those which exist independent of an observer), and 'conceptual systems' (those which are symbolic constructs). Our system, 'The anti-virus strategy system', is not so different from many others, in that it is composed of all three elements: computers (objects), people (subjects) and concepts (policies and ideas). Each of these systems has its own subsystems. For example, your system of networked computers consists of individual computers. These computers are comprised of yet more subsystems; microprocessors, resistors, disk drives, etc. Our system consists of both real and conceptual subsystems. A system can also be said to be a way of looking at the world, or a point of view [5].


Concepts, laws, and models often appear in widely different fields [6] based upon totally different facts. This appears to be at least in part due to problems of organization, phenomena which cannot be resolved into local events, and dynamic interactions manifested in the difference of behaviour of parts when isolated or in higher configurations. The result is, of course, a system which is not understandable by investigating their respective parts in isolation. One reason these identical principles have been discovered in entirely different fields is because people are unaware of what those in other disciplines are doing. General Systems theory attempts to avoid this overlap in research efforts.

There are two main methodologies of General Systems research; the empirico-intuitive and the deductive theory. The first is empirical, drawing upon the things which regularly exist in a set of systems. It can be illustrated fairly easily, but lacks mathematical precision and can appear to the 'scientist' to be na‹ve. However, the main principles which have been offered by this method include differentiation, competition, closed and open systems, and wholeness - hardly na‹ve or worthless principles. The second method, basically, can be described as 'the machine with input', defined by a set 'S' of internal states, a set 'I' of input and a mapping 'f' of the product I x S into S (organisation is defined by specifying states and conditions). Self-organising systems (those progressing from lower to higher states of complexity, as in many social organisations) are not well suited to this approach, as their change comes from an outside agent. Our anti-virus strategy system is such a system and for this reason we will use the empirico-intuitive methodology.

Classical system theory uses classical mathematics to define principles which apply to systems in general or to subclasses. General System theory can be called the doctrine of principles applying to defined classes of systems. It is our hope that we can stimulate thought on how already-known principles can help us in managing our anti-virus protection by examining the system as a whole.






No comments:

Post a Comment