By Sarah Gordon
E-mail:sgordon@low-level.format.com
© 1995 Virus Bulletin. This document may not be reproduced in whole or in part, stored on any electronic information system, or otherwise be made available without prior express written consent of Virus Bulletin.
Abstract:
Anti-virus protection is, or should be, an integral part of any Information Systems operation, be it personal or professional. However, our observation shows that the design of the actual anti-virus system, as well as its implementation and maintenance, can range from haphazard and sketchy to almost totally nonfunctional.
While systems theory in sociological disciplines has come under much attack, it has much to offer in the management of integration of technological applications into daily operations. We will examine the 'anti-virus' strategy (Policy, Procedure, Software [selection, implementation, maintenance]), focusing on areas where the 'system' can fail. We will address this interaction from a business, rather than a personal computing, point of view.
The Anti-Virus Strategy System will examine anti-virus strategies from a Holistic General Systems Theory perspective. By this, we mean that we will concern ourselves with the individual parts of the system, their functionality, and their interaction. We will draw from various IT models specifically designed to provide a holistic, forward-thinking approach to the problem, and show that for our strategy to flourish, we must concern ourselves with the system as a whole, not merely with its individual components
Introduction
Computer virus. System failure. These words bring to mind a computer system brought to its knees - data corrupted and time wasted. Is this an accurate picture? We hear arguments against investing in virus protection: 'Viruses are mythical. Your chances of getting hit by one are pretty rare.' Others tell us anti-virus software is a necessity: 'Viruses can cost your company a lot of money. Better safe than sorry.' What are we to believe?
Let's assume that you don't have any anti-virus software. If you are 'hit' by a virus, the cost will be proportional to the value of your data and the value of your time. Independent studies [1] have shown that this cost can be quite high, depending on these factors as well as environmental factors such as how many computers you have (Note: If your data is of little or no value, and if your time is worthless, then you can well afford not to have an anti-virus strategy).
We will assume here that your data is worth something to your company, and that your time also has a significant value. In this case, you will want to protect your computer system from viruses. We will concede for the purists among us that not all viruses are intentionally harmful, but stipulate that intentional harm is not requisite for actual harm. For our purposes, allocating disk space and CPU time and/or modification of files without knowledge and consent (implied or otherwise) constitutes damage, as do deliberate or unintentional disruption of work, corruption of data and the lost time mentioned earlier. Basically, we are saying viruses are bad and we want to protect against them (there may be some wonderful new virus out there in development that can help us, but that is beyond the scope of this paper).
Fortunately, we are in luck. The very thing we need already exists: software, which will detect 100 percent of viruses listed by the Wildlist [2] as being known to be in the wild. In tests run against a library matched with the Wildlist, several programs were capable of detecting all such viruses. The necessity of detection of 'lab' viruses is another matter, and will not be covered at this time, although it is addressed in [3].
Since we have such software, we should have no problems. However, there are problems. Something is wrong. Before examining the sources of the problem, a few comments on definitions we will be using are in order
Thursday, November 19, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment